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Foreword

Dependent type theory, the subject of this book, is a wonderfully beguiling, and aston-

ishingly effective, unification of mathematics and programming. In type theory when

you prove a theorem you are writing a program to meet a specification—and you can
even run it when you are done! A proof of the fundamental theorem of arithmetic
amounts to a program for factoring numbers. And it works the other wayas well: every

program is a proof that its specification is sensible enough to be implementable. Type

theory is a hacker’s paradise.

And yet, for many, type theory remains an esoteric world of sacred texts, revered

figures, and arcane terminology—a. hermetic realm out of the novels of Umberto Eco.

Be mystified no longer! Mycolleagues Dan Friedman and David Christiansen reveal
the secrets of type theory in an engaging, organic style that is both delightful and
enlightening, particularly for those for whom running code is the touchstone of rigor.

Youwill learn about normal forms, about canonization, about families of types, about

dependent elimination, and evenlearn the ulterior motives for induction.

When you are done, you will have reached a new level of understanding of both

mathematics and programming, gaining entrance to what is surely the future of both.

Enjoy the journey, the destination is magnificent!

Robert Harper

Pittsburgh

February, 2018
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Preface

A program’s type describes its behavior. Dependent types are a first-class part of a

language, which makes them vastly more powerful than other kinds of types. Using just

one language for types and programsallows program descriptions to be just as powerful

as the programs that they describe.

If you can write programs, then you can write proofs. This may come as a surprise—

for most of us, the two activities seem as different as sleeping and bicycling. It turns

out, however, that tools we know from programming, such as pairs, lists, functions,

and recursion, can also capture patterns of reasoning. An understanding of recursive

functions over non-nested lists and non-negative numbersis all you need to understand

this book. In particular, the first four chapters of The Little Schemer are all that’s

needed for learning to write programs andproofs that work together.

While mathematics is traditionally carried out in the human mind, the marriage

of math and programming allows us to run our math just as we run our programs.
Similarly, combining programming with math allows our programs to directly express

why they work.
Ourgoalis to build an understanding of the important philosophical and mathemat-

ical ideas behind dependent types. Thefirst five chapters provide the needed tools to

understand dependent types. The remaining chapters use these tools to build a bridge

between math and programming. The turning point is chapter 8, where types become

statements and programs becomeproofs.

Ourlittle language Pie makes it possible to experiment with these ideas, while

still being small enough to be understood completely. The implementation of Pie is
designed to take the mystery out of implementing dependent types. We encourage you

to modify, extend, and hack on it—you can even bake your own Pie in the language of

your choice. Thefirst appendix, The Way Forward, explains howPie relates to fully-
featured dependently typed languages, and the second appendix, Rules Are Made to

Be Spoken, gives a complete description of how the Pie implementation works. Pie is

available from http: //thelittletyper.com.
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Guidelines for the Reader

Do not rush through this book. Read carefully, including the frame notes; valuable

hints are scattered throughout the text. Read every chapter. Remember to take breaks
so each chapter can sink in. Read systematically. If you do not fully understand one

chapter, you will understand the next one even less. The questions are ordered by

increasing difficulty; later questions rely on comfort gained earlier in the book.
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Guess! This book is based on intuition, and yours is as good as anyone’s. Also,

if you can, experiment with the examples while you read. The Recess that starts on
page 62 contains instructions for using Pie.

From time to time, we show computation steps in a chart. Stop and work through

each chart, even the long ones, and convince yourself that each step makes sense by

understanding why it makes sense.
The Laws and Commandments summarize the meanings of expressions in Pie.

Lawsdescribe which expressions are meaningful, and Commandments describe which

expressions are the same as others. For a Commandment to apply, it is assumed that

the corresponding Lawsaresatisfied.

Food appears in some examples for two reasons. First, food is easier to visualize

than abstract symbols. We hope the food imagery helps you to better understand the

examples and concepts. Second, we want to providea little distraction. Expanding your
mind can betiring; these snacks should help you get through the afternoon. As such,
we hope that thinking about food will lead you to take some breaks andrelax.

You are now readyto start. Good luck! We hope you enjoy the book.

Bon appétit!

Daniel P. Friedman
Bloomington, Indiana

David Thrane Christiansen

Portland, Oregon
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The Little Typer



 



 

Welcome back! It’s good to be here!

 

Let’s dust off and update some of our old
toys for a new languagecalled Pie.

Is it obvious that this is an Atom?

‘atom

Not at all. What does Atom mean?

 

To be an Atom is to be an atom.!

tm Lisp, atoms are symbols, numbers, and
many other things. Here, atoms are only symbols.

Then ‘atom is an Atom because "atom is

an atom.

 

Is it obvious that this is an Atom?

‘ratatouille

Yes, because 'ratatouille is also an atom.

But what does it precisely mean to be an
atom?

 

Atomsare built from a tick mark

directly followed by one or moreletters

and hyphens.'

tin Pie, only atoms use the tick mark.

So, is it obvious that

"is-it-obvious-that-this-is-an-atom

is an Atom?

 

. . 6

Certainly, because atoms can contain

hyphens.

What about

Are they atoms?

is an atom because hyphens can appear

anywhere in an atom;

is not an atom becauseit’s missing the

tick mark; and

is not an atombecauseit is neither

followed bya letter nor by a hyphen.

 

The More Things Change, the More They Stay the Same 3


































































































































































































































































































































































































































































































































































































































































































































































































































