
Sol inawahigoly,
hy Wee)

Daniel P. Friedman and David Thrane Christiansen

Foreword by Robert Harper Afterword by Conor McBride

Drawings by Duane Bibby

The Little Typer

The Little Typer

Daniel P. Friedman

David Thrane Christiansen

Drawings by Duane Bibby

Foreword by Robert Harper

Afterword by Conor McBride

The MIT Press

Cambridge, Massachusetts

London, England

© 2018 Massachusetts Institute of Technology

All rights reserved. With the exception of completed code examples in solid boxes, no
part of this book may be reproduced in any form by anyelectronic or mechanical means

(including photocopying, recording, or information storage and retrieval) without per-

mission in writing from the publisher. The completed code examples that are presented

in solid boxes are licensed under a Creative Commons Attribution 4.0 International
License (CC-By 4.0).

This book was set in Computer Modern Unicode by the authors using ETpX. Printed

and boundin the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Friedman, Daniel P., author. | Christiansen, David Thrane, author.

Title: Thelittle typer / Daniel P. Friedman and David Thrane Christiansen ; drawings

by Duane Bibby ; foreword by Robert Harper ; afterword by Conor McBride.

Description: Cambridge, MA : The MIT Press, [2018] | Includes index.
Identifiers: LCCN 2018017792 | ISBN 9780262536431 (pbk. : alk. paper)

Subjects: LCSH: Functional programming (Computer science) | Logic programming. |
Computerlogic. | Type theory.
Classification: LCC QA76.63 .F75 2018 | DDC 005.101/5113-dce23 LC record available
at https: //lcecn.loc.gov/2018017792

0987654321

To Mary, with all my love.

Til Lisbet, min elskede.

(Contents

(
(
((1.
((2.

(
(3
((4.
((5.
((6.
((7.

Foreword ix)

Preface xi)

The More Things Change, the More They Stay the Same) 2)

Doin’ What Comes Naturally) 32)

(Recess: A Forkful of Pie) 62)

. Eliminate All Natural Numbers!) 68)

Easy as Pie) 92)

Lists, Lists, and More Lists) 108)

Precisely How Many?) 128)

It All Depends On the Motive) 142)

((Recess: One Piece at a Time) 164)

((8.

((9.
((10.
((11.

((12.
((13.
((14.
((15.
((16.

Pick a Number, Any Number) 170)

Double Your Money, Get Twice as Much) 196)

It Also Depends Onthe List) 218)

All Lists Are Created Equal) 244)

Even Numbers Can Be Odd) 264)

Even Haf a Baker’s Dozen) 278)

There’s Safety in Numbers) 294)

Imagine That ...) 316)

If It’s All the Same to You) 342)

(Appendix

((A. The Way Forward) 356)

((B. Rules Are Made to Be Spoken) 362))

(Afterword 395)

(Index 396))

Foreword

Dependent type theory, the subject of this book, is a wonderfully beguiling, and aston-

ishingly effective, unification of mathematics and programming. In type theory when

you prove a theorem you are writing a program to meet a specification—and you can
even run it when you are done! A proof of the fundamental theorem of arithmetic
amounts to a program for factoring numbers. And it works the other wayas well: every

program is a proof that its specification is sensible enough to be implementable. Type

theory is a hacker’s paradise.

And yet, for many, type theory remains an esoteric world of sacred texts, revered

figures, and arcane terminology—a. hermetic realm out of the novels of Umberto Eco.

Be mystified no longer! Mycolleagues Dan Friedman and David Christiansen reveal
the secrets of type theory in an engaging, organic style that is both delightful and
enlightening, particularly for those for whom running code is the touchstone of rigor.

Youwill learn about normal forms, about canonization, about families of types, about

dependent elimination, and evenlearn the ulterior motives for induction.

When you are done, you will have reached a new level of understanding of both

mathematics and programming, gaining entrance to what is surely the future of both.

Enjoy the journey, the destination is magnificent!

Robert Harper

Pittsburgh

February, 2018

Foreword ix

prior permission. Violators will be prosecuted.

prior permission. Violators will be prosecuted.

Preface

A program’s type describes its behavior. Dependent types are a first-class part of a

language, which makes them vastly more powerful than other kinds of types. Using just

one language for types and programsallows program descriptions to be just as powerful

as the programs that they describe.

If you can write programs, then you can write proofs. This may come as a surprise—

for most of us, the two activities seem as different as sleeping and bicycling. It turns

out, however, that tools we know from programming, such as pairs, lists, functions,

and recursion, can also capture patterns of reasoning. An understanding of recursive

functions over non-nested lists and non-negative numbersis all you need to understand

this book. In particular, the first four chapters of The Little Schemer are all that’s

needed for learning to write programs andproofs that work together.

While mathematics is traditionally carried out in the human mind, the marriage

of math and programming allows us to run our math just as we run our programs.
Similarly, combining programming with math allows our programs to directly express

why they work.
Ourgoalis to build an understanding of the important philosophical and mathemat-

ical ideas behind dependent types. Thefirst five chapters provide the needed tools to

understand dependent types. The remaining chapters use these tools to build a bridge

between math and programming. The turning point is chapter 8, where types become

statements and programs becomeproofs.

Ourlittle language Pie makes it possible to experiment with these ideas, while

still being small enough to be understood completely. The implementation of Pie is
designed to take the mystery out of implementing dependent types. We encourage you

to modify, extend, and hack on it—you can even bake your own Pie in the language of

your choice. Thefirst appendix, The Way Forward, explains howPie relates to fully-
featured dependently typed languages, and the second appendix, Rules Are Made to

Be Spoken, gives a complete description of how the Pie implementation works. Pie is

available from http: //thelittletyper.com.

Acknowledgments

We thank Bob and Conorfor their lyrical and inspiring foreword and afterword. They

are renownedfor their creative work in type theory and type practice, and for their

exceptional writing. They have made major contributions to the intellectual framework

behind The Little Typer, and their influence can be found throughout.

Preface xi

Suzanne Menzel, Mitch Wand, Gershom Bazerman, and Michael Vanier read mul-

tiple drafts of the book, providing detailed feedback on both the content and the
exposition. Their willingness to read and re-read the text has been invaluable. Ben
Boskin implemented the specification of Pie in miniKanren, alerting us to several errors

and omissions in the process.

We would additionally like to thank Edwin Brady, James Chapman, Carl Factora,
Jason Hemann, Andrew Kent, Weixi Ma, Wouter Swierstra, and the students in Indiana

University’s special topics courses on dependent types in the Spring semesters of 2017

and 2018 for their careful, considered feedback and penetrating questions. Both the

clarity and the correctness of the contents were considerably improved as a result of

their help.

Sam Tobin-Hochstadt, NSF grant 1540276, and the School of Informatics, Comput-

ing, and Engineering generously supported the second author during his postdoctoral
fellowship at Indiana University, during which most of the writing occurred. The
administrative staff, especially Lynne Mikolon and Laura Reed, as well as the chair of
Computer Science Amr Sabry, continue to make Indiana University such a supportive

and exciting environment.

Marie Lee and Stephanie Cohen at the MIT Press shepherded us through the process

of making this book real. Similarly, a “little” book wouldn't be a “little” book without

Duane Bibby’s wonderful artwork.

The technical contributions of the Scheme, Racket, and BT—X communities were
tremendously valuable. In particular, we heavily used both Sam Tobin-Hochstadt’s

Typed Racket and Robby Findler and Matthias Felleisen’s contract system while imple-

menting Pie. Dorai Sitaram’s SHTX system was once again invaluable in typesetting

our examples, and Carl Eastlund’s TX macros and extensions to SH*TpX saved us many
hours of work.

The Sweetpea Baking Company in Portland, Oregon provided a good working

environment and a much-needed napkin.

Adam Foltzer introduced the authors to one another following David’s internship

at Galois, Inc. in 2014. We are very grateful that he brought us together.

Finally, we would like to thank Mary Friedman for her support, patience, delicious

lunches, and occasional suppers during long hours of writing at the Friedman home, and

Lisbet Thrane Christiansen for her support, patience, jokesmithing, help with French,

and occasional consultation on graphic design.

Guidelines for the Reader

Do not rush through this book. Read carefully, including the frame notes; valuable

hints are scattered throughout the text. Read every chapter. Remember to take breaks
so each chapter can sink in. Read systematically. If you do not fully understand one

chapter, you will understand the next one even less. The questions are ordered by

increasing difficulty; later questions rely on comfort gained earlier in the book.

xii Preface

Guess! This book is based on intuition, and yours is as good as anyone’s. Also,

if you can, experiment with the examples while you read. The Recess that starts on
page 62 contains instructions for using Pie.

From time to time, we show computation steps in a chart. Stop and work through

each chart, even the long ones, and convince yourself that each step makes sense by

understanding why it makes sense.
The Laws and Commandments summarize the meanings of expressions in Pie.

Lawsdescribe which expressions are meaningful, and Commandments describe which

expressions are the same as others. For a Commandment to apply, it is assumed that

the corresponding Lawsaresatisfied.

Food appears in some examples for two reasons. First, food is easier to visualize

than abstract symbols. We hope the food imagery helps you to better understand the

examples and concepts. Second, we want to providea little distraction. Expanding your
mind can betiring; these snacks should help you get through the afternoon. As such,
we hope that thinking about food will lead you to take some breaks andrelax.

You are now readyto start. Good luck! We hope you enjoy the book.

Bon appétit!

Daniel P. Friedman
Bloomington, Indiana

David Thrane Christiansen

Portland, Oregon

Preface xiii

The Little Typer

Welcome back! It’s good to be here!

Let’s dust off and update some of our old
toys for a new languagecalled Pie.

Is it obvious that this is an Atom?

‘atom

Not at all. What does Atom mean?

To be an Atom is to be an atom.!

tm Lisp, atoms are symbols, numbers, and
many other things. Here, atoms are only symbols.

Then ‘atom is an Atom because "atom is

an atom.

Is it obvious that this is an Atom?

‘ratatouille

Yes, because 'ratatouille is also an atom.

But what does it precisely mean to be an
atom?

Atomsare built from a tick mark

directly followed by one or moreletters

and hyphens.'

tin Pie, only atoms use the tick mark.

So, is it obvious that

"is-it-obvious-that-this-is-an-atom

is an Atom?

. . 6

Certainly, because atoms can contain

hyphens.

What about

Are they atoms?

is an atom because hyphens can appear

anywhere in an atom;

is not an atom becauseit’s missing the

tick mark; and

is not an atombecauseit is neither

followed bya letter nor by a hyphen.

The More Things Change, the More They Stay the Same 3

